Dr Kenneth Tran

BE(Hons) PhD

Profile Image
Research Fellow


Kenneth's doctoral work focussed on developing a mathematical model of the cardiac ventricular myocyte that couples together energy demand and supply processes within the cell. This provides a tool to investigate and delineate the pathways that lead to pathologies arising from a mismatch in energy balance, such as ischaemia where a portion of the heart tissue becomes poorly perfused due to a blockage of the coronary vessels.

Subsequent to his graduation, Kenneth was appointed as a postdoctoral research fellow at the ABI.

Research | Current

Kenneth is currently working as a postdoctoral fellow on the Virtual Physiological Rat (VPR) which is an international collaboration focussed on developing models to understand and investigate the rat physiome. Kenneth is focussed on further developing his cell model and supplementing it with experimental data from rat cardiac tissue to progress the ABI's understanding of cardiac energetics.

Virtual Physiological Rat

Postgraduate supervision


  • Lauren Dupuis (Masters, 2014)
  • Megan Guidry (Masters, 2016)

Areas of expertise

Computational modelling of cardiac cellular bioenergetics.


Selected publications and creative works (Research Outputs)

  • Pan, M., Gawthrop, P. J., Tran, K., Cursons, J., & Crampin, E. J. (2018). Bond graph modelling of the cardiac action potential: implications for drift and non-unique steady states. Proceedings. Mathematical, physical, and engineering sciences, 474 (2214)10.1098/rspa.2018.0106
  • GHOSH, S. H. O. U. R. Y. A. D. I. P. T. A., Tran, K., Delbridge, L., Hickey, A., Hanssen, E., Crampin, E., & Rajagopal, V. (2018). Insights on the impact of mitochondrial organisation on bioenergetics in high-resolution computational models of cardiac cell architecture. 10.1101/327254
    Other University of Auckland co-authors: Vijayaraghavan Rajagopal
  • Ghosh, S., Trani, K., Crampin, E., Hanssen, E., & Rajagopa, V. (2/2/2018). Creatine-Kinase Shuttle and Rapid Mitochondrial Membrane Potential Conductivity are Needed Simultaneously to Maintain Uniform Metabolite Distributions in the Cardiac Cell Contraction Cycle. Poster presented at 62nd Annual Meeting of the Biophysical-Society, San Francisco, CA. BIOPHYSICAL JOURNAL.
  • Pan, M., Gawthrop, P. J., Tran, K., Cursons, J., & Crampin, E. J. (2018). A thermodynamic framework for modelling membrane transporters. Journal of Theoretical Biology10.1016/j.jtbi.2018.09.034
  • Tran, K., Han, J.-C., Crampin, E. J., Taberner, A. J., & Loiselle, D. S. (2017). Experimental and modelling evidence of shortening heat in cardiac muscle. Journal of Physiology, 595 (19), 6313-6326. 10.1113/JP274680
    Other University of Auckland co-authors: Denis Loiselle, June-Chiew Han, Andrew Taberner
  • Schroeder, A., Babarenda Gamage, T. P., Wang, V., Loiselle, D. S., Nielsen, P. M. F., Nickerson, D. P., ... Tran, K. (2017). Computational Modelling of Cardiac Trabecula Mechanics. ANZIAM Journal. 10.21914/anziamj.v59i0.12682
    Other University of Auckland co-authors: Thiranja Babarenda Gamage, Denis Loiselle, David Nickerson, Andrew Taberner, Martyn Nash
  • Pham, T., Tran, K., Mellor, K. M., Hickey, A., Power, A., Ward, M. L., ... Loiselle, D. (2017). Does the intercept of the heat-stress relation provide an accurate estimate of cardiac activation heat?. The Journal of Physiology, 595 (14), 4725-4733. 10.1113/jp274174
    URL: http://hdl.handle.net/2292/35048
    Other University of Auckland co-authors: Kim Mellor, Andrew Taberner, Denis Loiselle, Marie-Louise Ward, Toan Pham, June-Chiew Han, Tony Hickey
  • Tran, K. (2017). Shortening Heat In Cardiac Muscle. Paper presented at Annual Meeting of the American-Society-for-Pharmacology-and-Experimental-Therapeutics (ASPET) at Experimental Biology Meeting, Chicago, IL. 22 April - 26 April 2017. FASEB JOURNAL. (pp. 1).


Contact details

Primary office location

Level 6, Room 617
New Zealand

Web links